Grundstrukturen des Sehens entschlüsselt

    -     English  -  Français
Grundstrukturen des Sehens entschlüsselt

Beim Sehen löst Licht, das ins Auge fällt, einen mehrstufigen chemischen Vorgang aus. An dessen Ende steht ein Nervenimpuls, der den Lichteindruck in Richtung Gehirn weiterleitet. Am Anfang steht die Wechselwirkung des Lichts mit dem Protein Rhodopsin. Dieses enthält den eigentlichen Lichtsensor – der von dem einfallenden Licht dazu angeregt wird, seine Form zu verändern und so den Vorgang anzustossen. Einem Forscherteam ist es nun gelungen, die genaue Struktur des Rhodopsinmoleküls in diesem kurzlebigen angeregten Zustand zu bestimmen und so ein genaues Bild der ersten Stufe des Sehvorgangs zu liefern. Dieses Ergebnis dürfte zum besseren Verständnis der erblichen Augenkrankheit Retinitis Pigmentosa beitragen und möglicherweise Wege für deren Behandlung oder Verlangsamung aufzeigen. Gleichzeitig liefert das Ergebnis die Basis für das Verständnis vieler weiterer Vorgänge im Organismus, die auf einem ähnlichen Mechanismus beruhen – etwa die Wahrnehmung von Gerüchen oder die Steuerung von Abläufen über Hormone. 

Sehen ist ein hochkomplexer Vorgang – eine Vielzahl von chemischen Reaktionen muss ablaufen bevor das Gesehene unser Bewusstsein erreicht. Ganz am Anfang dieses Vorgangs trifft das Licht auf die Sehsinneszellen in der Netzhaut des Auges – die Zapfen oder Stäbchen. In den Zellmembranen der Stäbchen, die für das Sehen bei schlechten Lichtverhältnissen zuständig sind, sitzen Rhodopsin-Moleküle – die eigentlichen Lichtsensoren. Sie bestehen aus jeweils insgesamt sieben stabförmigen Molekülteilen, die von aussen ins Innere der Zelle hineinreichen. Fällt Licht von aussen auf das Rhodopsin, verändert sich die Anordnung der stabförmigen Teile so, dass im Inneren der Zelle ein so genanntes G-Proteinmolekül Platz dazwischen findet. Das Andocken des G-Proteins stösst eine Kaskade von Vorgängen an, an deren Ende ein Nervenimpuls ausgelöst wird.

Das eigentlich lichtempfindliche Pigment ist das Retinal – eine Form von Vitamin A – das als kleines geknicktes Molekül zwischen den sieben Teilen des Rhodopsins steckt. Sobald Licht darauf fällt, streckt es sich und drückt Teile des Rhodopsins auseinander, so dass Platz für das G-Protein entsteht. Nun ist es Forschenden des Paul Scherrer Instituts gelungen, die Struktur des Rhodopsins im aktivierten Zustand zu bestimmen – also in der durch das Licht veränderten Form mit dem gestreckten Retinal. Dieser Zustand ist eigentlich sehr kurzlebig, da das Rhodopsin ja möglichst schnell in den Zustand zurückkehren muss, in dem es für Licht empfänglich ist. Die Forschenden haben aber einen Weg gefunden, das Molekül geringfügig so zu verändern, dass es die aktivierte Form länger beibehält und konnten damit seine Struktur bestimmen. Die Struktur der inaktiven Form des Rhodopsins, wie sie ohne Licht auftritt, war schon vorher bekannt. Mit der Kenntnis beider Strukturen kann man jetzt genau nachvollziehen wie der Sehvorgang im Auge auf molekularer Ebene beginnt.

Für die Untersuchungen wurden die entsprechenden Moleküle in grosser Menge erzeugt und in einer Kristallstruktur regelmässig angeordnet. Dabei ist Rhodopsin eines der sehr wenigen Membranproteine dieser Klasse, die sich kristallisieren lassen. Die Kristalle wurden mit Synchrotronlicht durchleuchtet und aus der Ablenkung des Lichts auf dem Weg durch den Kristall können die Forschenden auf die Struktur der untersuchten Moleküle schliessen. Die Messungen wurden an der Synchrotron Lichtquelle Schweiz SLS des Paul Scherrer Instituts und an zwei weiteren ähnlichen Anlagen durchgeführt.

Universelle Mechanismen des Lebens verstehen

Die Untersuchung des Rhodopsins hilft uns, eine grosse Klasse von ähnlichen Molekülen zu verstehen – es gibt mehr als 800 davon im Menschen. Die meisten reagieren nicht auf Licht, sondern auf andere Reize und erfüllen so die unterschiedlichsten Aufgaben: Im Geruchssinn reagieren sie auf Substanzen aus der Atemluft. Oder sie dienen als Rezeptoren für Hormone innerhalb des Körpers – wie etwa die Beta-Rezeptoren, die am Herzen für Steuerung des Blutdrucks mitverantwortlich sind. Diese dienen als Andockstelle für die als Betablocker bekannten Mittel gegen Bluthochdruck. Insgesamt sind diese Moleküle von grossem Interesse für die pharmazeutische Forschung, weil man über sie Vorgänge im Körper sehr gezielt steuern oder blockieren kann. So wechselwirken etwa Medikamente, die bei Herzrhythmusstörungen, Migräne oder Allergien eingesetzt werden, mit diesen Rezeptoren.

Optimierte Therapien für Augenkrankheit

Die Erfahrung mit der Strukturuntersuchung an veränderten Rhodopsin-Molekülen wenden die Wissenschaftler/innen derzeit auch zur Erforschung einer verbreiteten Augenkrankheit an – der Retinitis Pigmentosa. Bei dieser ererbten Krankheit ist oftmals das Rhodopsin in den Zapfen des Auges verändert. So wird es nicht wie im gesunden Auge regelmässig vollständig erneuert – es verbleiben stets Teile der alten Moleküle, die allmählich die Sehzellen vergiften. Das führt anfangs zu Nachtblindheit und über längere Zeit zu einem deutlich eingeschränkten Gesichtsfeld. Die Forschenden hoffen, in Zukunft genau bestimmen zu können, in welcher Weise das Rhodopsin bei der Erkrankung verändert ist, um dann zu untersuchen, wie kleine Moleküle, die als Medikamente die Erkrankung aufhalten, in das Rhodopsin eingebaut werden. Mit diesem Wissen könnte man dann am Computer die Struktur der Medikamente gezielt optimieren.

CW

Diese Website verwendet Cookies und Analysetools, um die Benutzerfreundlichkeit der Website zu verbessern. Weitere Informationen. |