Neue Methode zur Bestimmung der Austauschenergie bei 2D-Materialien

- EN- DE - FR- IT
Das zweidimensionale Halbleitermaterial Molybdändisulfid wird mit Elektronen (ro
Das zweidimensionale Halbleitermaterial Molybdändisulfid wird mit Elektronen (rote Kugeln) gefüllt. Die Elektron-Elektron-Wechselwirkung führt dazu, dass sich die Spins aller Elektronen (rote Pfeile) in dieselbe Richtung ausrichten. Die Austauschenergie, die benötigt wird, damit ein einziger Elektronenspin in dem ferromagnetischen Zustand seine Richtung ändert, lässt sich über den Abstand zweier bestimmter Spektrallinien ermitteln. (Bild: N. Leisgang/Scixel).
Forschende der Universität Basel haben untersucht, wie die ferromagnetischen Eigenschaften von Elektronen im zweidimensionalen Halbleiter Molybdändisulfid besser verstanden werden können. Sie zeigen, dass die Energie, die benötigt wird, um einen parallel ausgerichteten Elektronenspin umzudrehen, auf Überraschend einfache Art gemessen werden kann.

Ferromagnetismus ist ein wichtiges physikalisches Phänomen, das für viele Technologien zentral ist. Bekannt ist es von Metallen wie Eisen, Kobalt und Nickel, die bei Raumtemperatur magnetisch sind, weil ihre Elektronenspins parallel ausgerichtet sind. Erst bei sehr hohen Temperaturen verlieren diese Materialien ihre magnetischen Eigenschaften.

Die Wissenschaftlerinnen und Wissenschaftler um Richard Warburton vom Departement Physik und Swiss Nanoscience Institute der Universität Basel haben gezeigt, dass auch Molybdändisulfid unter bestimmten Bedingungen ferromagnetische Eigenschaften hat. Bei niedrigen Temperaturen und einem externen Magnetfeld richten sich die Elektronenspins in diesem Material ebenfalls parallel aus.

In ihrer aktuellen Studie, veröffentlicht im Fachjournal ’Physical Review Letters’, haben die Forschenden festgestellt, wie viel Energie notwendig ist, um einen einzelnen Elektronenspin in diesem ferromagnetischen Zustand umzudrehen. Diese sogenannte Austauschenergie ist wichtig, da sie die Stabilität der ferromagnetischen Eigenschaften beschreibt.

Mit Detektivarbeit zur einfachen Lösung

’Wir haben Molybdändisulfid mit einem Laser angeregt und die emittierten Spektrallinien analysiert’, erklärt Nadine Leisgang, die Hauptautorin der Studie. Jede Spektrallinie entspricht einer bestimmten Wellenlänge und Energie. Durch die Messung des Abstands zwischen bestimmten Spektrallinien konnten die Forschenden die Austauschenergie bestimmen. Sie fanden heraus, dass diese Energie in Molybdändisulfid nur etwa zehnmal kleiner ist als in Eisen, was zeigt, dass der Ferromagnetismus des Materials sehr stabil ist.

’Obwohl die Lösung einfach erscheint, war viel Detektivarbeit nötig, um die Spektrallinien richtig zuzuordnen’, sagt Richard Warburton.

Zweidimensionale Materialien

2D-Materialien sind in der Materialforschung sehr wichtig, da sie aufgrund quantenmechanischer Effekte besondere physikalische Eigenschaften haben. Sie können zudem zu sogenannten van-der-Waals-Heterostrukturen gestapelt werden.

Im Beispiel der Studie ist die Molybdändisulfidschicht von hexagonalem Bornitrid und Graphen umgeben. Diese Schichten werden durch schwache van-der-Waals-Bindungen zusammengehalten und besitzen einzigartige Eigenschaften, die sie für die Elektronik und Optoelektronik interessant machen. Das Verständnis ihrer elektrischen und optischen Eigenschaften ist wichtig, um sie in zukünftigen Technologien nutzen zu können.

Originalpublikation

Nadine Leisgang, Dmitry Miserev, Hinrich Mattiat, Lukas Schneider, Lukas Sponfeldner, Kenji Watanabe, Takashi Taniguchi, Martino Poggio and Richard J. Warburton
Exchange energy of the ferromagnetic electronic ground state in a monolayer semiconductor
Physical Review Letters (2024), doi: 10.1103/PhysRevLett.133.026501