news
« ZURÜCK
Agronomie / Lebensmittelingenieur - Materialwissenschaft - 16.10.2020
Materialwissenschaft - 15.10.2020
Physik - Materialwissenschaft - 12.10.2020
Materialwissenschaft - Biowissenschaften - 30.09.2020
Umwelt - Materialwissenschaft - 29.09.2020
Physik - Materialwissenschaft - 23.09.2020
Physik - Materialwissenschaft - 22.09.2020
Materialwissenschaft - 10.09.2020
Physik - Materialwissenschaft - 07.09.2020
Materialwissenschaft - Innovation - 20.08.2020
Astronomie / Weltraum - Materialwissenschaft - 19.08.2020
Physik - Materialwissenschaft - 10.08.2020
Materialwissenschaft - Physik - 10.08.2020
Materialwissenschaft - Umwelt - 17.07.2020
Materialwissenschaft - Physik - 10.07.2020
Materialwissenschaft - Mathematik - 06.07.2020
Materialwissenschaft - Elektrotechnik - 02.07.2020
Physik - Materialwissenschaft - 25.06.2020
Materialwissenschaft - Physik - 24.06.2020
Chemie - Materialwissenschaft - 23.06.2020
Materialwissenschaft
Ergebnisse 81 - 100 von 267.
Tockenfruechte im Ionenwind
Wird Obst oder Gemüse durch Wärme getrocknet, können Nährstoffe zerstört werden und Aromastoffe verloren gehen. Deshalb ist das nichtthermische Trocknen von Lebensmitteln - also ohne Erwärmen - in der Industrie besonders beliebt. Dabei kommen unter anderem Ventilatoren zum Einsatz. Ein neues, an der Empa entwickeltes Trocknungsverfahren mittels Ionenwind verspricht nun ein energieeffizienteres, schnelleres und erst noch schonenderes Trocknen von Lebensmitteln.
Wird Obst oder Gemüse durch Wärme getrocknet, können Nährstoffe zerstört werden und Aromastoffe verloren gehen. Deshalb ist das nichtthermische Trocknen von Lebensmitteln - also ohne Erwärmen - in der Industrie besonders beliebt. Dabei kommen unter anderem Ventilatoren zum Einsatz. Ein neues, an der Empa entwickeltes Trocknungsverfahren mittels Ionenwind verspricht nun ein energieeffizienteres, schnelleres und erst noch schonenderes Trocknen von Lebensmitteln.
Am farbigen Faden
Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reissen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. Empa-Forschende haben nun eine Beschichtung entwickelt, die die Farbe wechselt, wenn sie hohen Temperaturen durch Reibung oder Feuer ausgesetzt war.
Hochleistungsfasern, die hohen Temperaturen ausgesetzt waren, verlieren meist unerkannt ihre mechanischen Eigenschaften und können im schlimmsten Fall genau dann reissen, wenn Leben davon abhängen. Zum Beispiel Sicherheitsseile der Feuerwehr oder Tragseile für schwere Lasten auf Baustellen. Empa-Forschende haben nun eine Beschichtung entwickelt, die die Farbe wechselt, wenn sie hohen Temperaturen durch Reibung oder Feuer ausgesetzt war.
Wohlgeformte Unordnung für vielseitige Lichttechnologien
ETH-Forschenden gelang es, mit Mikrokügelchen aus ungeordneten Nanokristallen ein effizientes Material zur breitbandigen Frequenzverdopplung von Licht herzustellen. Die entscheidende Idee dazu entstand in einer Kaffeepause. Der neue Ansatz könnte künftig in Lasern und anderen Lichttechnologien zum Einsatz kommen.
ETH-Forschenden gelang es, mit Mikrokügelchen aus ungeordneten Nanokristallen ein effizientes Material zur breitbandigen Frequenzverdopplung von Licht herzustellen. Die entscheidende Idee dazu entstand in einer Kaffeepause. Der neue Ansatz könnte künftig in Lasern und anderen Lichttechnologien zum Einsatz kommen.
Wie schwache Kräfte Zellmembranen verformen
Forschende konnten zeigen, warum biologische Zellen erstaunlich vielfältige Formen annehmen können: Dies hat mit der Anzahl und Stärke lokaler Kräften zu tun, die von Innen auf die Zellmembran wirken. Die Erkenntnis trägt dazu bei, bessere Modellsysteme und künstliche Zellen zu entwickeln. Dornartige Fortsätze, lange Geisseln oder Fasern, unförmige Aussackungen: Biologische Zellen können fast beliebige komplexe Membranstrukturen ausbilden.
Forschende konnten zeigen, warum biologische Zellen erstaunlich vielfältige Formen annehmen können: Dies hat mit der Anzahl und Stärke lokaler Kräften zu tun, die von Innen auf die Zellmembran wirken. Die Erkenntnis trägt dazu bei, bessere Modellsysteme und künstliche Zellen zu entwickeln. Dornartige Fortsätze, lange Geisseln oder Fasern, unförmige Aussackungen: Biologische Zellen können fast beliebige komplexe Membranstrukturen ausbilden.
Radioaktive Elemente aus dem Wasser filtern
Vor einiger Zeit entwickelten ETH-Forscher eine Filtermembran aus Molkeproteinen und Aktivkohle. Nun zeigen sie in einer neuen Studie, dass diese Membran auch sehr effizient radioaktive Elemente aus verseuchtem Wasser filtert. Der GAU von Fukushima ist im kollektiven Gedächtnis haften geblieben. Bei dieser Katastrophe traten grosse Mengen radioaktiv verseuchtes Wasser aus, das die AKW-Betreiber reinigen mussten.
Vor einiger Zeit entwickelten ETH-Forscher eine Filtermembran aus Molkeproteinen und Aktivkohle. Nun zeigen sie in einer neuen Studie, dass diese Membran auch sehr effizient radioaktive Elemente aus verseuchtem Wasser filtert. Der GAU von Fukushima ist im kollektiven Gedächtnis haften geblieben. Bei dieser Katastrophe traten grosse Mengen radioaktiv verseuchtes Wasser aus, das die AKW-Betreiber reinigen mussten.
Nanowirbel mit besonderer Eigenschaft
In manchen magnetischen Materialien lassen sich wirbelförmige Nano-Strukturen erzeugen: sogenannte Skyrmionen. Forschende am PSI haben nun erstmals antiferromagnetische Skyrmionen erschaffen und nachgewiesen. Ihre Besonderheit: In ihnen sind entscheidende Bausteine gegenläufig zueinander ausgerichtet.
In manchen magnetischen Materialien lassen sich wirbelförmige Nano-Strukturen erzeugen: sogenannte Skyrmionen. Forschende am PSI haben nun erstmals antiferromagnetische Skyrmionen erschaffen und nachgewiesen. Ihre Besonderheit: In ihnen sind entscheidende Bausteine gegenläufig zueinander ausgerichtet.
Ein elektronisches Material massschneidern
Forschende des PSI haben grundlegende Erkenntnisse über ein vielversprechendes Material gewonnen, das sich für zukünftige Anwendungen in der Datenspeicherung eignen könnte. In ihren Experimenten mit dem Strontium-Iridium-Oxid Sr2IrO 4 untersuchten sie gleichzeitig den Magnetismus sowie die elektronischen Eigenschaften von dünnen Materialfilmen und analysierten, wie sich diese Eigenschaften durch Verzerrung der Filme gezielt einstellen lassen.
Forschende des PSI haben grundlegende Erkenntnisse über ein vielversprechendes Material gewonnen, das sich für zukünftige Anwendungen in der Datenspeicherung eignen könnte. In ihren Experimenten mit dem Strontium-Iridium-Oxid Sr2IrO 4 untersuchten sie gleichzeitig den Magnetismus sowie die elektronischen Eigenschaften von dünnen Materialfilmen und analysierten, wie sich diese Eigenschaften durch Verzerrung der Filme gezielt einstellen lassen.
Transistor-integrierte Kühlung für einen leistungsfähigeren Chip
Wissenschaftler der EPFL haben einen Transistor mit einem elektronischen Kühlsystem entwickelt, das in denselben Chip eingebettet ist. Diese in Nature veröffentlichte Forschung soll es ermöglichen, Energie zu sparen und immer mehr miniaturisierte Komponenten herzustellen. Das Wärmemanagement in der Elektronik ist ein großes Problem.
Wissenschaftler der EPFL haben einen Transistor mit einem elektronischen Kühlsystem entwickelt, das in denselben Chip eingebettet ist. Diese in Nature veröffentlichte Forschung soll es ermöglichen, Energie zu sparen und immer mehr miniaturisierte Komponenten herzustellen. Das Wärmemanagement in der Elektronik ist ein großes Problem.
Winziges Instrument misst kleinste Magnetfelder
Physiker der Universität Basel haben ein winziges Instrument entwickelt, das kleinste Magnetfelder detektieren kann. Dieses supraleitende Quanteninterferometer beruht auf zwei atomaren Lagen Graphen, welche die Forschenden mit Bornitrid kombinierten. Instrumente wie dieses finden beispielsweise Anwendung in der Medizin, aber auch in der Erforschung neuer Materialien.
Physiker der Universität Basel haben ein winziges Instrument entwickelt, das kleinste Magnetfelder detektieren kann. Dieses supraleitende Quanteninterferometer beruht auf zwei atomaren Lagen Graphen, welche die Forschenden mit Bornitrid kombinierten. Instrumente wie dieses finden beispielsweise Anwendung in der Medizin, aber auch in der Erforschung neuer Materialien.
Aerogel - der Mikro-Baustoff der Zukunft
Aerogel ist ein hervorragender Wärmeisolator. Bislang wird es jedoch vor allem im Grossmassstab eingesetzt, etwa in der Umwelttechnik, bei physikalischen Experimenten oder in der industriellen Katalyse. Empa-Forschern ist es nun gelungen, Aerogele auch für die Mikroelektronik und im Bereich der Feinmechanik zugänglich zu machen: Ein Beitrag in der jüngsten Ausgabe der Fachzeitschrift «Nature» zeigt auf, wie 3D-gedruckte Teile aus Silica-Aerogel und Silica-Komposit-Werkstoffen mit hoher Präzision hergestellt werden können.
Aerogel ist ein hervorragender Wärmeisolator. Bislang wird es jedoch vor allem im Grossmassstab eingesetzt, etwa in der Umwelttechnik, bei physikalischen Experimenten oder in der industriellen Katalyse. Empa-Forschern ist es nun gelungen, Aerogele auch für die Mikroelektronik und im Bereich der Feinmechanik zugänglich zu machen: Ein Beitrag in der jüngsten Ausgabe der Fachzeitschrift «Nature» zeigt auf, wie 3D-gedruckte Teile aus Silica-Aerogel und Silica-Komposit-Werkstoffen mit hoher Präzision hergestellt werden können.
Neues Instrument für die Suche nach Leben im All
Forschende der Universität Bern haben das hoch empfindliche Instrument ORIGIN für zukünftige Weltraummissionen entwickelt, welches Kleinstmengen von Spuren von Leben nachweisen kann. Bereits haben Weltraumorganisationen wie die NASA Interesse bekundet, ORIGIN für zukünftige Missionen zu testen. Zum Einsatz kommen könnte das Instrument zum Beispiel bei Missionen zu den Eismonden Europa (Jupiter) und Enceladus (Saturn).
Forschende der Universität Bern haben das hoch empfindliche Instrument ORIGIN für zukünftige Weltraummissionen entwickelt, welches Kleinstmengen von Spuren von Leben nachweisen kann. Bereits haben Weltraumorganisationen wie die NASA Interesse bekundet, ORIGIN für zukünftige Missionen zu testen. Zum Einsatz kommen könnte das Instrument zum Beispiel bei Missionen zu den Eismonden Europa (Jupiter) und Enceladus (Saturn).
Stark lichtabsorbierendes und regelbares Material entwickelt
Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert. Sie erreichen dies mithilfe von zweilagigem Molybdändisulfid. Aufgrund dieser besonderen Eigenschaften der neuen Struktur ist eine Anwendung als optisches Bauteil oder als Quelle für einzelne Photonen denkbar, die in den Quantenwissenschaften eine wichtige Rolle spielen.
Physiker der Universität Basel haben durch die Schichtung verschiedener zweidimensionaler Materialien eine neue Struktur geschaffen, die Licht einer wählbaren Wellenlänge fast vollständig absorbiert. Sie erreichen dies mithilfe von zweilagigem Molybdändisulfid. Aufgrund dieser besonderen Eigenschaften der neuen Struktur ist eine Anwendung als optisches Bauteil oder als Quelle für einzelne Photonen denkbar, die in den Quantenwissenschaften eine wichtige Rolle spielen.
Simulations-Mikroskop prüft Transistoren der Zukunft
Seit der Entdeckung von Graphen stehen zweidimensionale Materialien im Fokus der Materialforschung. Mit ihnen liessen sich unter anderem winzige, leistungsstarke Transistoren bauen. Forscher der ETH Zürich und der EPF Lausanne haben nun aus 100 möglichen Materialien 13 vielversprechende Kandidaten entdeckt.
Seit der Entdeckung von Graphen stehen zweidimensionale Materialien im Fokus der Materialforschung. Mit ihnen liessen sich unter anderem winzige, leistungsstarke Transistoren bauen. Forscher der ETH Zürich und der EPF Lausanne haben nun aus 100 möglichen Materialien 13 vielversprechende Kandidaten entdeckt.
Fluor-Recycling für Lithium-Ionen-Akkus
Lithium-Ionen-Akkus enthalten Fluor-reiche Salze, die an feuchter Luft zu giftigem, stark ätzendem Fluorwasserstoff zerfallen. Die Gefährlichkeit von Fluorwasserstoff erschwert und verteuert das Recycling. An der Empa startet nun ein Forschungsprojekt «Fluoribat», um dieses Problem zu lösen. So könnte der Lebenszyklus eines Akkus preisgünstiger ablaufen und zugleich sicherer werden.
Lithium-Ionen-Akkus enthalten Fluor-reiche Salze, die an feuchter Luft zu giftigem, stark ätzendem Fluorwasserstoff zerfallen. Die Gefährlichkeit von Fluorwasserstoff erschwert und verteuert das Recycling. An der Empa startet nun ein Forschungsprojekt «Fluoribat», um dieses Problem zu lösen. So könnte der Lebenszyklus eines Akkus preisgünstiger ablaufen und zugleich sicherer werden.
Bis zum Limit
Topologische Materialen sind eine neue Klasse von Materialien, die völlig neue Arten von elektronischen Bauteilen und Supraleitern ermöglichen könnten. In topologischen Materialien können sich Elektronen anders verhalten als in konventionellen. Das Ausmass dieser «exotischen» Phänomene hängt von der so genannten Chern-Zahl ab.
Topologische Materialen sind eine neue Klasse von Materialien, die völlig neue Arten von elektronischen Bauteilen und Supraleitern ermöglichen könnten. In topologischen Materialien können sich Elektronen anders verhalten als in konventionellen. Das Ausmass dieser «exotischen» Phänomene hängt von der so genannten Chern-Zahl ab.
Der Selbstorganisation ein Schnippchen schlagen
Forschende der ETH Zürich haben Kügelchen aus Polymer-Gelen dazu gebracht, in einem Zwei-Schritt-Verfahren von alleine komplexe Muster zu bilden. Damit könnten Oberflächen mit massgeschneiderten optischen und mechanischen Eigenschaften realisiert werden. Wenn man das Bad oder die Terrasse neu fliest und dabei zum Beispiel quadratische, rechteckige oder sechseckige Fliesen benutzt, so kommt, wenn man alles richtig macht, ein einfaches und regelmässiges Muster dabei heraus.
Forschende der ETH Zürich haben Kügelchen aus Polymer-Gelen dazu gebracht, in einem Zwei-Schritt-Verfahren von alleine komplexe Muster zu bilden. Damit könnten Oberflächen mit massgeschneiderten optischen und mechanischen Eigenschaften realisiert werden. Wenn man das Bad oder die Terrasse neu fliest und dabei zum Beispiel quadratische, rechteckige oder sechseckige Fliesen benutzt, so kommt, wenn man alles richtig macht, ein einfaches und regelmässiges Muster dabei heraus.
Das leichteste Abschirmmaterial der Welt
Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen - und sind bezüglich Gewicht konkurrenzlos.
Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen - und sind bezüglich Gewicht konkurrenzlos.
Röntgenblick und Lauschangriff sorgen für Qualität
Mit einem Röntgenversuch an der «European Synchrotron Radiation Facility» (ESRF) im französischen Grenoble wiesen Empa-Forscher nach, wie gut ihre akustische Echtzeitüberwachung von Laserschweissprozessen funktioniert: Mit fast 90-prozentiger Sicherheit erkannten sie die Bildung von unerwünschten Poren, die die Qualität von Schweissnähten beeinträchtigen.
Mit einem Röntgenversuch an der «European Synchrotron Radiation Facility» (ESRF) im französischen Grenoble wiesen Empa-Forscher nach, wie gut ihre akustische Echtzeitüberwachung von Laserschweissprozessen funktioniert: Mit fast 90-prozentiger Sicherheit erkannten sie die Bildung von unerwünschten Poren, die die Qualität von Schweissnähten beeinträchtigen.
Gewellte Oberflächen für bessere Lichtkontrolle
Forschende der ETH Zürich haben ein Verfahren zur Herstellung von gewellten Oberflächen mit Nanometer-Präzision entwickelt. Damit können in Zukunft zum Beispiel optische Bauteile, die zur Datenübertragung im Internet verwendet werden, noch leistungsfähiger und kompakter werden. Wie wichtig auf Licht basierende Technologien für unsere Gesellschaft sind, wurde in den letzten Wochen wieder deutlich.
Forschende der ETH Zürich haben ein Verfahren zur Herstellung von gewellten Oberflächen mit Nanometer-Präzision entwickelt. Damit können in Zukunft zum Beispiel optische Bauteile, die zur Datenübertragung im Internet verwendet werden, noch leistungsfähiger und kompakter werden. Wie wichtig auf Licht basierende Technologien für unsere Gesellschaft sind, wurde in den letzten Wochen wieder deutlich.
Verteilung der Kettenlängen von Polymeren gezielt einstellen
ETH-Forschende entwickeln eine neue Methode, um kontrolliert Polymere von unterschiedlicher Länge zu erzeugen. Dies ebnet den Weg für neue Klassen von Kunststoffen, die in bisher undenkbaren Anwendungen eingesetzt werden können. Aus unserem Alltag sind Materialien aus synthetischen Polymeren kaum mehr wegzudenken.
ETH-Forschende entwickeln eine neue Methode, um kontrolliert Polymere von unterschiedlicher Länge zu erzeugen. Dies ebnet den Weg für neue Klassen von Kunststoffen, die in bisher undenkbaren Anwendungen eingesetzt werden können. Aus unserem Alltag sind Materialien aus synthetischen Polymeren kaum mehr wegzudenken.