Electron spin could be the key to high-temperature superconductivity

Marco Grioni ©2014 Alain Herzog/EPFL
Marco Grioni ©2014 Alain Herzog/EPFL
EPFL scientists take a significant step in our understanding of superconductivity by studying the strange quantum events in a unique superconducting material. Cuprates are materials with great promise for achieving superconductivity at higher temperatures (-120oC). This could mean low-cost electricity without energy loss. Intense research has focused on understanding the physics of cuprates in the hope that we can develop room-temperature superconductors. EPFL scientists have now used a cutting-edge technique to uncover the way cuprates become superconductors. Conventional superconductors are materials that conduct electricity with no electrical resistance under temperatures nearing absolute zero (-273.15°C or 0 Kelvin). Under these conditions, the electrons of the material join up and form electron couples that are called "Cooper pairs", and in this form can flow without resistance. Generally, cooper pairs form at such low temperatures, and only when the superconductor's atoms vibrate and create an attractive force between electrons. However, there is a class of superconductors where Cooper pairs do not form because atoms nudge them together. These superconductors are copper-based materials called "cuprates", and in normal temperatures they are actually electrical insulators and magnets. The popularity of cuprates comes from the fact that they become superconductors at much higher temperatures than other materials: just over -123.15°C (150 Kelvin). This makes cuprates an excellent way towards everyday superconductivity. However, previous studies have suggested that cuprates do not become superconducting like other materials, which poses the question: how does superconductivity arise in cuprates?
account creation

UM DIESEN ARTIKEL ZU LESEN, ERSTELLEN SIE IHR KONTO

Und verlängern Sie Ihre Lektüre, kostenlos und unverbindlich.



Ihre Vorteile

  • Zugang zu allen Inhalten
  • Erhalten Sie Newsmails für Neuigkeiten und Jobs
  • Anzeigen veröffentlichen

myScience