X-ray Microscopy unveils the buried secrets of the nanoworld

- EN - DE- FR
A novel super-resolution X-ray microscope developed by a team of researchers from the Paul Scherrer Institut (PSI) and EPFL in Switzerland combines the high penetration power of x-rays with high spatial resolution, making it possible for the first time to shed light on the d etailed interior composition of semiconductor devices and cellular structures. "Researchers have been working on such super-resolution microscopy concepts for electrons and x-rays for many years," says EPFL Professor and team leader Franz Pfeiffer. "Only the construction of a dedicated multi-million Swiss-franc instrument at PSI's Swiss Light Source allowed us to achieve the stability that is necessary to implement our novel method in practice." The new instrument uses a Megapixel Pilatus detector whose big brother will be detecting collisions from CERN's Large Hadron Collider. Detailed images thanks to a Swiss algorithm Pilatus has excited the synchrotron community for its ability to count millions of single x-ray photons over a large area. This key feature makes it possible to record detailed diffraction patterns while the sample is raster-scanned through the focal spot of the beam. In contrast, conventional x-ray (or electron) scanning microscopes measure only the total transmitted intensity. These diffraction data are then treated with an algorithm conceived by the Swiss team.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience
CW