Bakterien gelten als wahre Éberlebenskünstler. Ihre Fähigkeit, sich schnell an ändernde Umweltbedingungen anzupassen, verdanken sie zwei miteinander konkurrierenden Signalmolekülen. Als «Yin und Yang» des Stoffwechsels entscheiden sie über die Lebensweise von Bakterien, wie Forschende der Universität Basel berichten. Die Erkenntnisse spielen auch für bakterielle Infektionen eine Rolle.
Ob Krankheitserreger, Tiefseeoder Bodenbewohner, um zu überleben, müssen sich Mikroorganismen rasch auf verschiedenste Veränderungen in ihrer Umgebung einstellen können, so auch an einen Mangel an Nährstoffen. Die schnelle Anpassung an widrige Lebensbedingungen gelingt Bakterien unter anderem mithilfe kleiner Signalmoleküle.
Jetzt haben Forschende unter der Leitung von Urs Jenal und Tilman Schirmer vom Biozentrum der Universität Basel herausgefunden, dass Bakterien mithilfe von zwei chemisch verwandten Signalmolekülen ihre Lebensweise den vorherrschenden Lebensbedingungen anpassen können. Davon berichten die Forschenden im Fachblatt ’Nature Microbiology’. Wie Yin und Yang verkörpern die beiden Moleküle zwei Kräfte, die auf gegensätzliche Art und Weise das Wachstum und den Stoffwechsel der Bakterien steuern.
Bakterium mit zwei Lebensstilen
Wie die beiden Gegenspieler namens ppGpp und c-di-GMP in der Zelle agieren, haben die Wissenschaftlerinnen und Wissenschaftler am Beispiel von Caulobacter crescentus untersucht. Dieses Bakterium kann in zwei unterschiedliche Rollen schlüpfen: Es kommt als frei-schwimmende Form vor, welche sich nicht teilen kann, und als vermehrungsfähige Form, welche sich an Oberflächen heftet.
Sowohl die Lebensform als auch die äusseren Bedingungen spiegeln sich in der Konzentration der beiden Signalmoleküle wider. Die Information über die Konzentration fliesst an einer Stelle zusammen, einem Protein, welches als Schaltzentrale fungiert und über das Wachstum und die Lebensform des Bakteriums entscheidet.
Signalmoleküle entscheiden über Lebensform
Die Signalmoleküle ppGpp und c-di-GMP konkurrieren um die Bindung an der Schaltzentrale. ’In schwimmenden Bakterien, bei denen überwiegend ppGpp vorkommt, ist das Protein angeschaltet, also aktiv’, erklärt Urs Jenal. ’Die Zuckerverbrennung läuft in diesem Zustand auf Hochtouren. Gleichzeitig werden die dabei entstehenden schädlichen Sauerstoffradikale effektiv entsorgt.’ So ist sichergestellt, dass der hohe Energiebedarf der beweglichen Schwimmerzellen gedeckt ist und Zellschäden ausbleiben.
Bei günstigen Lebensbedingungen mit ausreichend Nährstoffen steigt der Spiegel von c-di-GMP kontinuierlich an. Aus dem Schwärmer entwickelt sich ein sesshaftes Bakterium. ’c-di-GMP verdrängt ppGpp aus der Bindungstasche des Proteins, es verändert seine Form und schaltet sich selber ab’, so Jenal. ’Dadurch wird der bakterielle Stoffwechsel umgestellt. Die Zeichen stehen nun auf Wachsen und Sesshaft werden. Die Produktion von Baustoffen für die Zelle wird angekurbelt und es werden Klebstoffe hergestellt, mit denen sich das Bakterium an Oberflächen anheften kann.’
Bedeutend auch für bakterielle Infektionen
Die Forscherinnen und Forscher haben mit dem molekularen Schalter das Verbindungsstück zweier grosser regulatorischer Netzwerke entdeckt, die man bislang als getrennte Einheiten betrachtet hatte. Caulobacter ist zwar ein harmloses Umweltbakterium, der neu entdeckte Yin-Yang-Mechanismus könnte jedoch auch bei Krankheitserregern eine wichtige Rolle spielen.
Möglicherweise ist dieser sogar von zentraler Bedeutung. Denn sowohl ppGpp als auch c-di-GMP beeinflussen auf unterschiedlichen Wegen die Virulenz, die Resistenz gegenüber Antibiotika oder die Fähigkeit der Bakterien in ihrem Wirt zu überdauern. Damit beeinflussen sie den Verlauf vieler Infektionen.
Originalpublikation
Viktoriya Shyp, Badri N. Dubey, Raphael Böhm, Johannes Hartl, Jutta Nesper, Julia A. Vorholt, Sebastian Hiller, Tilman Schirmer and Urs Jenal.
Reciprocal growth control by competitive binding of nucleotide second messengers to a bacterial metabolic switch.
Nature Microbiology (2020), DOI: 10.1038/s41564-020-00809-4