Surfaces of the liquid metal region surrounded by magnetic field lines represent consequent moments of the modeled geomagnetic reversal. The big sphere is the close up of the surface of the liquid core in the first snapshot. (Image: J. Favre, A. Sheyko).
Earth's magnetic field has reversed direction hundreds of times in the course of our planet's history. But the cause of those reversals remains unclear. 4 million CPU hours of simulations on the 'Piz Daint' supercomputer at CSCS offer fresh clues that point to a phenomenon called 'dynamo waves' playing a possible role. In November 2013 the European Space Agency (ESA) sent three satellites into space, which have since been making precise measurements of Earth's magnetic field. For this continues to hold scientific mysteries: as an example, the causal mechanism for the magnetic field reversals remains unclear to this day. One possible mechanism has now been identified by ETH scientists Andrew Jackson and Andrey Sheyko together with Chris Finlay of the Technical University of Denmark, based on simulations performed on the 'Piz Daint' supercomputer. Their Simulations, seismic measurements and the physical properties of minerals - from those we know the composition of Earth's deep interior - have so far been the only avenues for researching the emergence of our planet's magnetic field.
PER LEGGERE QUESTO ARTICOLO, CREA IL TUO ACCOUNT
Ed estendere la vostra lettura, gratuitamente e senza alcun impegno.