News 2019

« BACK

Materials Science



Results 1 - 20 of 48.
1 2 3 Next »


Materials Science - Health - 22.11.2019
Protection for pacemakers
Protection for pacemakers
A protective membrane for cardiac pacemakers developed at ETH Zurich has proved successful in animal trials in reducing the undesirable build-up of fibrotic tissue around the implant. The next step is to test the protective membrane in patients. ETH scientists have developed a special protective membrane made of cellulose that significantly reduces the build-up of fibrotic tissue around cardiac pacemaker implants, as reported in the current issue of the journal Biomaterials.

Materials Science - Mechanical Engineering - 21.11.2019
Eliminating cracks in 3D-printed metal components
Eliminating cracks in 3D-printed metal components
Researchers at EPFL have developed a new laser 3D-printing technique to manufacture metal components with unprecedented resistance to high temperature, damage and corrosion. The method has applications in fields ranging from aerospace to power-generating turbines. 3D printing, also known as additive manufacturing, has revolutionized the way components are made, setting new standards in terms of production speed when geometric complexity is high.

Materials Science - 21.11.2019
Software to speed up textile development
Software to speed up textile development
Whether for sports, at work or in the living room - depending on activity and environment, our clothing has to meet different demands. Empa scientists have developed a model that predicts how well a given garment will keep us warm. The crucial factor is the air cushion between our body and the outermost layer of clothing.

Materials Science - History / Archeology - 13.11.2019
Finest handwork
Finest handwork
In autumn 2017, the archaeological service of the Canton of Berne was amazed when two private individuals delivered a crusted lump of metal. The bronze hand of Prles, decorated with a ribbon of gold, turned out to be the oldest bronze sculpture of a human body part in Central Europe. But where did the metals of the sensational find come from? Empa researchers were involved in the investigation.

Materials Science - Chemistry - 12.11.2019
A cheaper way to scale up atomic layer deposition
A cheaper way to scale up atomic layer deposition
Chemical engineers at EPFL have developed a new method for atomic layer deposition, a technique commonly used in high-quality microelectronics. The new method can be used in materials with larger surfaces much more cheaply than current approaches, while preserving quality and efficiency. Atomic layer deposition (ALD) involves stacking layers of atoms on top of each other like pancakes.

Materials Science - 12.11.2019
A fast and precise look into fibre-reinforced composites
A fast and precise look into fibre-reinforced composites
Researchers at the Paul Scherrer Institute PSI have improved a method for small angle X-ray scattering (SAXS) to such an extent that it can now be used in the development or quality control of novel fibre-reinforced composites. This means that in the future, such materials can be investigated not only with X-rays from especially powerful sources such as the Swiss Light Source SLS, but also with those from conventional X-ray tubes.

Health - Materials Science - 23.10.2019
Monitoring the corrosion of bioresorbable magnesium
Monitoring the corrosion of bioresorbable magnesium
ETH researchers have recently been able to monitor the corrosion of bioresorbable magnesium alloys at the nanoscale over a time scale of a few seconds to many hours. This is an important step towards accurately predicting how fast implants are resorbed by the body to enable the development of tailored materials for temporary implant applications.

Music - Materials Science - 08.10.2019
Romantic Replicas
Romantic Replicas
To play a piece of music as it was conceived by the composer is a trend. But where can the rare historical instruments be found? The solution would be exact copies of the coveted originals. A team of Empa researchers is analysing such replicas with the aim of reproducing historical trombones with their typical sound.

Materials Science - Health - 08.10.2019
On Your Medicine's Secret Service
On Your Medicine’s Secret Service
Whether a wound heals well under a dressing cannot be seen from the outside. Empa researchers are now enabling a view through the bandage la James Bond. The refined application of terahertz radiation could promote the analysis of multi-layered tissues for medical purposes and be used for wound treatment or the diagnostics of blood vessel plaques.

Music - Materials Science - 08.10.2019
An Open Ear for Noise
An Open Ear for Noise
A rippling stream is Jean-Marc Wunderli's favourite sound. However, his everyday research has little to do with calming natural sounds. He deals with completely different ones: noise from aircraft turbines, train noise, busy roads, wind turbines and now even drones. All these emissions are part of the research activities of Empa's Acoustics / Noise Control Lab, which Wunderli is heading since last July.

Materials Science - Physics - 07.10.2019
Unbreakable
Unbreakable
Can glass flow at room temperature and thus withstand hard impacts' A theory from the 1970s predicted exactly this. Empa researchers have now provided the proof. The results could form the basis for robust 3D printed glass microarchitectures. No one in the world has ever seen what we have measured," says Rajaprakash Ramachandramoorthy.

Materials Science - Chemistry - 07.10.2019
Slow Decay
Slow Decay
"Corrosion" comes from Latin "corrodere": to gnaw something to pieces. This refers to the gradual destruction of a substance due to the influence of other substances in the environment. Specialists at Empa take a close look at such processes and can find timely ways to prevent material failure due to corrosion - long before disasters such as those in Genoa occur.

Materials Science - Environment - 07.10.2019
The Wood Paradox
The Wood Paradox
It can be deformed as required and is three times stronger than natural wood: the wood material developed by Marion Frey, Tobias Keplinger and Ingo Burgert at Empa and ETH Zurich has the potential to become a high-tech material. In the process, the researchers remove precisely the part of the wood that gives it its stability in nature: lignin.

Materials Science - Health - 07.10.2019
The Screw That Dissolves
The Screw That Dissolves
Where bones fracture, surgeons often have to join the fragments with implants. Magnesium orthopaedic screws, which over time dissolve in the body, spare patients another operation after healing is completed and reduce the risk of infection. What happens inside the body during this process, though, is still largely unknown.

Health - Materials Science - 26.09.2019
On the road to safe nanomedicine
On the road to safe nanomedicine
Tiny particles that can fight cancer or that can easily pass through any interface within our body are a great promise for medicine. But there is little knowledge thus far about what exactly will happen to nanoparticles within our tissues and whether or not they can cause disease by themselves. Within an international research consortium, Empa scientists have now developed guidelines that should enable the safe development of nanoparticles for medical use.

Materials Science - Chemistry - 24.09.2019
A battery with a twist
A battery with a twist
Markus Niederberger's team of researchers at ETH has used stretchable materials to develop a battery that can be bent, stretched and twisted. For applications in bendable electronic devices, this is precisely the kind of battery they need. Today's electronics industry is increasingly focusing on computers or smartphones with screens that can be folded or rolled.

Physics - Materials Science - 04.09.2019
Studying heart cells with nanovolcanoes
Studying heart cells with nanovolcanoes
Researchers at EPFL and the University of Bern have developed a groundbreaking method for studying the electrical signals of cardiac muscle cells. The technology has numerous potential applications in basic and applied research - such as improving the search for mechanisms underlying cardiac arrhythmias.

Materials Science - Computer Science / Telecom - 29.07.2019
Digitizing and replicating the world of materials
A team of EPFL researchers has set itself the lofty goal of building the biggest-ever database that digitizes the visual appearance of all natural and synthetic materials in the world.

Environment - Materials Science - 29.07.2019
Unravelling corrosion
Unravelling corrosion
ETH researchers have succeeded in elucidating how and at what rate steel corrodes in a variety of porous materials. Their findings help enable the breakthrough of new, environmentally friendly types of cement. The rate at which steel corrodes in concrete or other porous materials is crucial to a large number of technological applications, such as underground pipelines or steel-reinforced concrete bridges.

Physics - Materials Science - 19.07.2019
Better thermal conductivity by adjusting the arrangement of atoms
Better thermal conductivity by adjusting the arrangement of atoms
Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone.
1 2 3 Next »