Study suggests a promising future for soft bioelectronic interfaces in clinical settings

Study suggests a promising future for soft bioelectronic interfaces in clinical
Results demonstrate MRI compatibility, good surgical handling and reliable recording in bioelectronic interfaces that conform to the nervous system Geneva, Switzerland - A new study published in Advanced Science by researchers from the Laboratory of Soft BioElectronics Interfaces (LSBI) at EPFL, led by Prof. Stéphanie P. Lacour , has demonstrated MRI compatibility in their soft electrode arrays - a crucial step in translation to the clinic. The work, which received support from the Wyss Center, also confirms the reliable recording of these soft electrode arrays in animal models and surgical handling in human anatomy. Neural implants can be used to diagnose and treat neurological disorders like epilepsy by electrically recording from the surface of the brain during surgery. However, the long-term success of current neural interfaces is limited by the mechanical mismatch between stiff electronics and soft living tissues. At the LSBI, advances in stretchable electronics have enabled the development of electrode grids optimized for human anatomy using thin silicone films. This material has the same mechanical properties as the dura mater, the membrane covering the brain, and thus can conform to its complex shape. Working with clinicians at local hospitals, Prof. Jocelyne Bloch at CHUV (Lausanne) and Prof. Karl Schaller at HUG (Geneva), the LSBI team trialled the surgical handling of the soft electrode grids in human anatomy post-mortem.
account creation

TO READ THIS ARTICLE, CREATE YOUR ACCOUNT

And extend your reading, free of charge and with no commitment.



Your Benefits

  • Access to all content
  • Receive newsmails for news and jobs
  • Post ads

myScience