T cells (grey) attack a tumor cell. Therapeutic cancer vaccines are designed to train immune cells to attack the tumor efficiently. (Symbolic royaltystockphoto)
T cells (grey) attack a tumor cell. Therapeutic cancer vaccines are designed to train immune cells to attack the tumor efficiently. (Symbolic royaltystockphoto) - An international research group led by the University of Basel has developed a promising strategy for therapeutic cancer vaccines. Using two different viruses as vehicles, they administered specific tumor components in experiments on mice with cancer in order to stimulate their immune system to attack the tumor. The approach is now being tested in clinical studies. Making use of the immune system as an ally in the fight against cancer forms the basis of a wide range of modern cancer therapies. One of these is therapeutic cancer vaccination: following diagnosis, specialists set about determining which components of the tumor could function as an identifying feature for the immune system. The patient is then administered exactly these components by means of vaccination, with a view to triggering the strongest possible immune response against the tumor. Viruses that have been rendered harmless are used as vehicles for delivering the characteristic tumor molecules into the body. In the past, however, many attempts at creating this kind of cancer therapy failed due to an insufficient immune response. One of the hurdles is that the tumor is made up of the body's own cells, and the immune system takes safety precautions in order to avoid attacking such cells. In addition, the immune cells often end up attacking the "foreign?
TO READ THIS ARTICLE, CREATE YOUR ACCOUNT
And extend your reading, free of charge and with no commitment.