news 2022

« BACK

Electroengineering



Results 1 - 8 of 8.


Physics - Electroengineering - 26.12.2022
Optomechanics simulates graphene lattices
Optomechanics simulates graphene lattices
Scientists at EPFL have overcome the scaling challenges of quantum optomechanical systems and realized the first superconducting circuit optomechanical graphene lattice. The precise control of micro-mechanical oscillators is fundamental to many contemporary technologies, from sensing and timing to radiofrequency filters in smartphones.

Physics - Electroengineering - 23.11.2022
Spin correlation between paired electrons demonstrated
Spin correlation between paired electrons demonstrated
Physicists at the University of Basel have experimentally demonstrated for the first time that there is a negative correlation between the two spins of an entangled pair of electrons from a superconductor. For their study, the researchers used spin filters made of nanomagnets and quantum dots, as they report in the scientific journal Nature.

Physics - Electroengineering - 21.11.2022
A twin pack of cooled nanoparticles
A twin pack of cooled nanoparticles
Researchers at ETH have developed a technique to cool several nanoparticles simultaneously to temperatures of just a few thousandths of a degree above absolute zero. This new method can be used to study quantum effects of several nanoparticles and to build highly sensitive sensors. Over the past forty years, physicists have learned to cool increasingly large objects down to temperatures close to the absolute zero: atoms, molecules and, more recently, also nanoparticles consisting of billions of atoms.

Materials Science - Electroengineering - 27.10.2022
'Grätzel' solar cells achieve a new record
’Grätzel’ solar cells achieve a new record
Scientists at EPFL have increased the power conversion efficiency of dye-sensitized solar cells ("Grätzel cells") beyond 15% in direct sunlight and 30% in ambient light conditions. Mesoscopic dye-sensitized solar cells (DSCs) were invented in 1990s by Brian O'Regan and Michael Grätzel, taking on the latter's name - the world-famous Grätzel cells.

Physics - Electroengineering - 22.09.2022
Ultracold circuits
Ultracold circuits
Cooling materials to extremely low temperatures is important for basic physics research as well as for technological applications. By improving a special refrigerator and a low-temperature thermometer, Basel scientists have now managed to cool an electric circuit on a chip down to 220 microkelvin - close to absolute zero.

Electroengineering - Materials Science - 30.08.2022
Green electronics made from wood
Green electronics made from wood
Sustainable electronic components can be made from wood with the help of a novel process that uses a laser to engrave electrically conductive structures on veneers. A research team at Empa and at ETH's Institute for Building Materials has developed a practical and versatile method for making wooden surfaces electrically conductive.

Physics - Electroengineering - 17.06.2022
Boosting light power revolutionizes communications and autopilot
Boosting light power revolutionizes communications and autopilot
Scientists have built a compact waveguide amplifier by successfully incorporating rare-earth ions into integrated photonic circuits. The device produces record output power compared to commercial fiber amplifiers, a first in the development of integrated photonics over the last decades. Erbium-doped fiber amplifiers (EDFAs) are devices that can provide gain to the optical signal power in optical fibers, often used in long-distance communication fiber optic cables and fiber-based lasers.

Materials Science - Electroengineering - 14.03.2022
Scientists create new lead-free piezoelectric materials
Scientists create new lead-free piezoelectric materials
Researchers have discovered that gadolinium-doped cerium oxide, a compound they created in the lab, could be a promising alternative to certain piezoelectric materials: it has the same proprieties yet may be 100 times more effective. It's also lead-free, unlike the best piezoelectric materials, which means that it could be employed in bio-compatible medical applications.