news 2023
« BACK
Physics - Electroengineering - 20.03.2023
Electroengineering - Physics - 17.02.2023
Electroengineering
Results 1 - 2 of 2.
Sculpting quantum materials for the electronics of the future
An international team led by the University of Geneva has developed a quantum material in which the fabric of space inhabited by electrons can be curved on-demand. The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials - whose exceptional properties stem from quantum physics - is the most promising way to meet these challenges.
An international team led by the University of Geneva has developed a quantum material in which the fabric of space inhabited by electrons can be curved on-demand. The development of new information and communication technologies poses new challenges to scientists and industry. Designing new quantum materials - whose exceptional properties stem from quantum physics - is the most promising way to meet these challenges.
Electronic metadevices break barriers to ultra-fast communications
Researchers have come up with a new approach to electronics that involves engineering metastructures at the sub-wavelength scale. It could launch the next generation of ultra-fast devices for exchanging massive amounts of data, with applications in 6G communications and beyond. Until now, the ability to make electronic devices faster has come down to a simple principle: scaling down transistors and other components.
Researchers have come up with a new approach to electronics that involves engineering metastructures at the sub-wavelength scale. It could launch the next generation of ultra-fast devices for exchanging massive amounts of data, with applications in 6G communications and beyond. Until now, the ability to make electronic devices faster has come down to a simple principle: scaling down transistors and other components.