news

« BACK

Electroengineering



Results 1 - 20 of 67.
1 2 3 4 Next »


Electroengineering - Physics - 26.03.2021
New nanotransistors keep their cool at high voltages
New nanotransistors keep their cool at high voltages
Power converters play an essential role in electric vehicles and solar panels, for example, but tend to lose a lot of power in the form of heat in the electricity conversion process. Thanks to a new type of transistor developed at EPFL, these converters can perform at substantially improved efficiencies, especially in high-power applications.

Physics - Electroengineering - 18.03.2021
Nano-mapping phase transitions in electronic materials
Nano-mapping phase transitions in electronic materials
Scientists at EPFL and the University of Geneva have combined two powerful, cutting-edge techniques to uncover the physics behind an exotic phase transition that turns a metal into an insulator. The materials they looked at are rare-earth nickelates, which are of great interest for innovating new approaches in electronics.

Physics - Electroengineering - 09.03.2021
Nano-mapping phase transitions in electronic materials
Nano-mapping phase transitions in electronic materials
Scientists at EPFL and the University of Geneva have combined two powerful, cutting-edge techniques to uncover the physics behind an exotic phase transition that turns a metal into an insulator. The materials they looked at are rare-earth nickelates, which are of great interest for innovating new approaches in electronics.

Physics - Electroengineering - 15.02.2021
Kagome graphene promises exciting properties
Kagome graphene promises exciting properties
For the first time, physicists from the University of Basel have produced a graphene compound consisting of carbon atoms and a small number of nitrogen atoms in a regular grid of hexagons and triangles. This honeycomb-structured -kagome lattice- behaves as a semiconductor and may also have unusual electrical properties.

Physics - Electroengineering - 11.01.2021
Electrically switchable qubit can tune between storage and fast calculation modes
Electrically switchable qubit can tune between storage and fast calculation modes
To perform calculations, quantum computers need qubits to act as elementary building blocks that process and store information. Now, physicists have produced a new type of qubit that can be switched from a stable idle mode to a fast calculation mode. The concept would also allow a large number of qubits to be combined into a powerful quantum computer, as researchers from the University of Basel and TU Eindhoven have reported in the journal -Nature Nanotechnology-.

Physics - Electroengineering - 09.11.2020
A new candidate material for Quantum Spin Liquids
A new candidate material for Quantum Spin Liquids
Using a unique material, EPFL scientists have been able to design and study an unusual state of matter, the Quantum Spin Liquid. The work has significant implications for future technologies, from quantum computing to superconductivity and spintronics. In 1973, physicist and later Nobel laureate Philip W. Anderson proposed a bizarre state of matter: the quantum spin liquid (QSL).

Electroengineering - Life Sciences - 24.09.2020
Microelectronics shed light on neural behaviour
Microelectronics shed light on neural behaviour
Researchers at ETH Zurich - in collaboration with colleagues from EPFL in Lausanne and Harvard Medical School - have developed a system that allows them to optically stimulate individual nerve fibres in living mice. Through this process, they have demonstrated that the nervous system has a direct influence on the immune system.

Physics - Electroengineering - 22.09.2020
Customising an electronic material
Customising an electronic material
Scientists have gained a fundamental understanding of a highly promising material that could be suited to future data storage applications. Their experiments with strontium-iridium oxide, Sr2IrO 4 , investigated both the magnetic and electronic properties of the material as a thin film. They also analysed how these properties can be systematically controlled by manipulating the films.

Electroengineering - Environment - 10.09.2020
Transistor-integrated cooling for a more powerful chip
Transistor-integrated cooling for a more powerful chip
Researchers have created a single chip that combines a transistor and micro-fluidic cooling system. Managing the heat generated in electronics is a huge problem, especially with the constant push to reduce the size and pack as many transistors as possible in the same chip. The whole problem is how to manage such high heat fluxes efficiently.

Physics - Electroengineering - 07.09.2020
A tiny instrument to measure the faintest magnetic fields
A tiny instrument to measure the faintest magnetic fields
Physicists at the University of Basel have developed a minuscule instrument able to detect extremely faint magnetic fields. At the heart of the superconducting quantum interference device are two atomically thin layers of graphene, which the researchers combined with boron nitride. Instruments like this one have applications in areas such as medicine, besides being used to research new materials.

Physics - Electroengineering - 07.09.2020
Reconfiguring microwave photonic filters without an external device
Reconfiguring microwave photonic filters without an external device
Researchers from EPFL's Photonics Systems Lab have come up with a way of reconfiguring microwave photonic filters without the need for an external device. This paves the way for more compact, environmentally friendly filters that will be more practical and cheaper to use. Potential applications include detection and communications systems.

Physics - Electroengineering - 18.08.2020
Artificial materials for more efficient electronics
Artificial materials for more efficient electronics
The discovery of an unprecedented physical effect in a new artificial material marks a significant milestone in the lengthy process of developing "made-to-order" materials and more energy-efficient electronics. We are surrounded by electronic devices. Transistors are used to power telephones, computers, televisions, hi-fi systems and game consoles as well as cars, airplanes and the like.

Physics - Electroengineering - 06.08.2020
Efficient valves for electron spins
Efficient valves for electron spins
Researchers at the University of Basel in collaboration with colleagues from Pisa have developed a new concept that uses the electron spin to switch an electrical current. In addition to fundamental research, such spin valves are also the key elements in spintronics - a type of electronics that exploits the spin instead of the charge of electrons.

Physics - Electroengineering - 15.07.2020
Shaking light with sound
Shaking light with sound
Combining integrated photonics and MEMS technology, scientists from EPFL and Purdue University demonstrate monolithic piezoelectric control of integrated optical frequency combs with bulk acoustic waves. The technology opens up integrated ultrafast acousto-optic modulation for demanding applications.

Electroengineering - 03.07.2020
A completely new plasmonic chip for ultrafast data transmission using light
A completely new plasmonic chip for ultrafast data transmission using light
Researchers have built an ultrafast chip that can speed up data transmission in fibre optic networks. The chip combines several innovations at the same time and, given the growing demand for streaming and online services, represents a significant development.

Materials Science - Electroengineering - 02.07.2020
The lightest shielding material in the world
The lightest shielding material in the world
Researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range - and they are unrivalled in terms of weight. Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic components or the transmission of signals.

Physics - Electroengineering - 29.06.2020
A new theory for Semiconductors made of nanocrystals
A new theory for Semiconductors made of nanocrystals
Researchers have provided the first theoretical explanation for how electrical current is conducted in semiconductors made of nanocrystals. In the future, this could lead to the development of new sensors, lasers or LEDs for TV screens. A few years ago, we were introduced to TV screens featuring QLED technology that produces brilliant colours.

Materials Science - Electroengineering - 01.06.2020
Smart textiles powered by soft transmission lines
Smart textiles powered by soft transmission lines
EPFL researchers have developed electronic fibers that, when embedded in textiles, can collect a wealth of information about our bodies by measuring subtle and complex fabrics deformations. Their technology relies on transmission line theory and offers a host of applications, such as in health care and robotics.

Electroengineering - Health - 28.05.2020
Using electrical stimulus to regulate genes
Using electrical stimulus to regulate genes
A team of researchers has succeeded in using an electric current to directly control gene expression for the first time. Their work provides the basis for medical implants that can be switched on and off using electronic devices outside the body. This is how it works. A device containing insulin-producing cells and an electronic control unit is implanted in the body of a diabetic.

Physics - Electroengineering - 20.04.2020
Photonic microwave generation using on-chip optical frequency combs
Photonic microwave generation using on-chip optical frequency combs
Using integrated photonic chips fabricated at EPFL, scientists have demonstrated laser-based microwave generators. These microwave signals, as well as their optical carriers, could be used in radars, satellite communications and future 5G wireless networks. In our information society, the synthesis, distribution, and processing of radio and microwave signals are ubiquitous in wireless networks, telecommunications, and radars.
1 2 3 4 Next »