news

« BACK

Physics



Results 161 - 180 of 466.
« Previous 1 ... 5 6 7 8 9 10 11 12 13 ... 24 Next »


Chemistry - Physics - 04.07.2019
Molecular energy machine as a movie star
Molecular energy machine as a movie star
Researchers at the Paul Scherrer Institute PSI have used the Swiss Light Source SLS to record a molecular energy machine in action and thus to reveal how energy production at cell membranes works. For this purpose they developed a new investigative method that could make the analysis of cellular processes significantly more effective than before.

Life Sciences - Physics - 10.06.2019
New method reveals principles of chromatin folding in vivo
New method reveals principles of chromatin folding in vivo
Characterizing chromosome structure is fundamental to a better understanding of gene expression. Current experimental methods helped to build mechanistic models of chromosome folding, however they could not be formally validated so far by independent techniques. This is what the Giorgetti group just did - thanks to a new method they developed to measure chromosome structure quantitatively in living cells.

Materials Science - Physics - 04.06.2019
New material with magnetic shape memory
New material with magnetic shape memory
Researchers at the Paul Scherrer Institute PSI and ETH Zurich have developed a new material whose shape memory is activated by magnetism. It retains a given shape when it is put into a magnetic field. It is a composite material consisting of two components. What is special about the new material is that, unlike previous shape-memory materials, it consists of a polymer and droplets of a so-called magnetorheological fluid embedded in it.

Physics - Chemistry - 03.06.2019
Exposing modern forgers
Exposing modern forgers
Researchers at ETH Zurich have developed a process that can provide conclusive evidence with regard to modern fakes of paintings, even in cases where the forger recycled older canvases. This verification process requires less than 200 micrograms of paint. Art forgeries have been around since ancient times.

Life Sciences - Physics - 30.05.2019
A new mechanism for accessing damaged DNA
A new mechanism for accessing damaged DNA
May 30, 2019 UV light damages the DNA of skin cells, which can lead to skin cancer. But this process is counteracted by the DNA repair machinery, acting as a molecular sunscreen. It has been unclear, however, how repair proteins work on DNA tightly packed in chromatin, where access to DNA damage is restricted by protein packaging.

Physics - Mathematics - 28.05.2019
Researchers crack an enduring physics enigma
Researchers crack an enduring physics enigma
Researchers from EPFL have found the mechanism that lies behind a mysterious physics phenomenon in fluid mechanics: the fact that turbulence in fluids spontaneously self-organizes into parallel patterns of oblique turbulent bands - an example of order emerging spontaneously from chaos. In so doing, they solved a problem that had stumped generations of physicists.

Physics - 27.05.2019
A new theory of thermal conductivity
A new theory of thermal conductivity
Researchers have developed a new theory for heat conduction that can finally describe and predict the thermal conductivity of any insulating material. This new formulation will let scientists make accurate predictions of thermal conductivity in a range of materials for critical engineering applications - from electronics to lasers to waste-heat recovery.

Materials Science - Physics - 23.05.2019
Producing electricity at estuaries using light and osmosis
Producing electricity at estuaries using light and osmosis
Researchers at EPFL are working on a technology to exploit osmotic energy - a source of power that's naturally available at estuaries, where fresh water comes into contact with seawater. In a laboratory experiment, the team reproduced the real-world conditions that occur where rivers meet the sea (pH and salt concentration) and showed that, by shining light on a system comprising salt, water and a membrane three atoms thick, it was possible to optimize electricity production.

Physics - Chemistry - 22.05.2019
The geometry of an electron determined for the first time
The geometry of an electron determined for the first time
Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer.

Health - Physics - 09.05.2019
Cancer cells can communicate over longer distances within the body
Cancer cells can communicate over longer distances within the body
EPFL researchers have discovered that cancer cells use exosomes to communicate with each other and send information through the bloodstream. This breakthrough opens up new possibilities for the use of cancer immunotherapy techniques. "It was a huge surprise, we didn't expect to find so many melanoma cancer cell markers in blood exosomes," explains Hubert Girault, who heads up the Laboratory of Physical and Analytical Electrochemistry at EPFL Valais Wallis.

Physics - Materials Science - 07.05.2019
New material also reveals new quasiparticles
New material also reveals new quasiparticles
Researchers at PSI have investigated a novel crystalline material that exhibits electronic properties that have never been seen before. It is a crystal of aluminum and platinum atoms arranged in a special way. In the symmetrically repeating unit cells of this crystal, individual atoms were offset from each other in such a way that they - as connected in the mind's eye - followed the shape of a spiral staircase.

Physics - 07.05.2019
Twisting whirlpools of electrons
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments. In Jules Verne's famous classic Twenty Thousand Leagues Under the Sea , the iconic submarine Nautilus disappears into the Moskenstraumen, a massive whirlpool off the coast of Norway.

Physics - 03.05.2019
First demonstration of antimatter wave interferometry
An international collaboration with participation of the University of Bern has demonstrated for the first time in an interference experiment that antimatter particles also behave as waves besides having particle properties. This success paves the way to a new field of investigations of antimatter. Matter waves constitute a crucial feature of quantum mechanics, where particles have wave properties in addition to particle characteristics.

Physics - 03.05.2019
New holographic technique opens the way for quantum computation
EPFL physicists have developed a method based on the principles of holograms to capture 3D images of objects beyond the reach of light. Photography measures how much light of different color hits the photographic film. However, light is also a wave, and is therefore characterized by the phase. Phase specifies the position of a point within the wave cycle and correlates to depth of information, meaning that recording the phase of light scattered by an object can retrieve its full 3D shape, which cannot be obtained with a simple photograph.

Materials Science - Physics - 02.05.2019
Watching concrete explode
Watching concrete explode
Even if concrete is not flammable, it can be hazardous in tunnel fires: high-performance concrete can explode at high temperatures. Although the phenomenon is well known, the physics behind it have not yet been fully understood. Empa researchers have now made the processes inside concrete visible for the first time using real-time-neutron radiography and tomography.

Chemistry - Physics - 29.04.2019
Record solar hydrogen production with concentrated sunlight
Record solar hydrogen production with concentrated sunlight
EPFL researchers have created a smart device capable of producing large amounts of clean hydrogen. By concentrating sunlight, their device uses a smaller amount of the rare, costly materials that are required to produce hydrogen, yet it still maintains a high solar-to-fuel efficiency. Their research has been taken to the next scale with a pilot facility installed on the EPFL campus.

Physics - Chemistry - 29.04.2019
Decoupled graphene thanks to potassium bromide
Decoupled graphene thanks to potassium bromide
The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. This alters the electrical properties of the graphene produced, bringing them closer to pure graphene, as reported by physicists from the universities of Basel, Modena and Munich in the journal ACS Nano.

Astronomy / Space Science - Physics - 29.04.2019
Positive outcome from the CLASP-II solar physics experiment that involved IRSOL
Positive outcome from the CLASP-II solar physics experiment that involved IRSOL
Some of the CLASP-II scientists pose for a photograph in front of the rocket at White Sands Missile Range (New Mexico, USA) (image: U.S. Army, Louis Rosales) On April 11, 2019, at the NASA facility at the White Sands Missile Range in New Mexico (USA), the successful launch of a sounding rocket was performed as part of the "Chromospheric LAyer Spectro-Polarimeter" experiment (CLASP-II).

Physics - Materials Science - 25.04.2019
Unprecedented insight into two-dimensional magnets using diamond quantum sensors
Unprecedented insight into two-dimensional magnets using diamond quantum sensors
For the first time, physicists at the University of Basel have succeeded in measuring the magnetic properties of atomically thin van der Waals materials on the nanoscale. They used diamond quantum sensors to determine the strength of the magnetization of individual atomic layers of the material chromium triiodide.

Physics - Astronomy / Space Science - 24.04.2019
Researchers Observe Slowest Atom Decay Ever Measured
Researchers Observe Slowest Atom Decay Ever Measured
The XENON1T detector is mainly used to detect dark matter particles deep underground. But a research team led by Zurich physicists, among others, has now managed to observe an extremely rare process using the detector - the decay of the Xenon-124 atom, which has an enormously long half-life of 1.8 x 10^22 years.
« Previous 1 ... 5 6 7 8 9 10 11 12 13 ... 24 Next »