A Robot for Spinal Column Operations
With less than a 0.5 mm margin of error, Neuroglide, the robot developed by researchers allows for the placement of screws in small vertebrae with unequaled precision. Imagine placing a screw 4 mm in diameter into a bone that measures, on average, 6 mm in width, with cerebral arteries on one side and the spinal cord on the other. It's a risky operation for even the best surgeons. The robot, developed by Szymon Kostrzewki, Philippe Bérard and other researchers from the group "Virtual Reality and Active Interfaces" (VRAI) led by Charles Baur at the Robotic Systems Laboratory (LSRO2) at EPFL, has demonstrated a precision of 0.5 mm for this operation. Right now, trials are being done on bodies donated to science at the CHUV, and a start-up, KB medical, is being created. A Guide to Penetrate the Vertebrae The robot is compact, in the form of a small box, and is maintained by a passive structure on top of the operating field. The secret: a design that combines high precision mechanics and automatic control, giving the robot irreproachable accuracy. This level of reliability is not possible without the most discerning vision. An optical tracking camera, developed by Atracsys, another spin-off of VRAI at LSRO2, allows for following the trajectory of this medical drill precisely and in real-time. The information gathered is then transmitted to software that allows the robot to constantly reposition itself according to the trajectory pre-established by the surgeon. Even the Vibration of the Drilling is Corrected